New approaches to the treatment of rosacea on the basis pathogenesis factors and clinical forms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Uncovering the molecular mechanisms of the rosacea pathogenesis and treatment are still of great importance. The review encompasses the modern knowledge of rosacea classification, characterization of the severity of the course of the subtypes, and pathogenesis features. Recent methods of rosacea treatment are presented, including the use of botulinum neuroprotein for the correction of the erythematous-telangiectatic subtype of the dermatosis.

The relevance of this problem is due to the chronic course of the disease and the peculiarity of the localization of rosacea manifestations that leads to a traumatic effect and often causes social exclusion of patients.

The rise of the rosacea incidences, along with other reasons like characteristics of the course of dermatosis, accompanied by frequent long-term relapses, is due to the resistance to generally accepted methods of drug therapy, often resulting in shortened clinical remission. All the factors lead to decreasing of patient’s life quality that require the search for effective therapy approaches. Among modern rosacea therapy, the application of botulinum neuroprotein is widely used; however, the clinical studies confirming the effectiveness of this technique are not presented enough.

About the authors

Anna O. Yakovleva

State Research Center of Dermatovenereology and Cosmetology

Email: yakovleva.a@hotmail.com
ORCID iD: 0000-0001-8373-3979
SPIN-code: 7243-0586
Russian Federation, Moscow

Dmitry A. Verbenko

State Research Center of Dermatovenereology and Cosmetology

Email: verbenko@gmail.com
ORCID iD: 0000-0002-1104-7694
SPIN-code: 8261-6561

Cand. Sci. (Biol.)

Russian Federation, Moscow

Irina N. Kondrakhina

State Research Center of Dermatovenereology and Cosmetology

Email: kondrakhina77@gmail.com
ORCID iD: 0000-0003-3662-9954
SPIN-code: 8721-9424

MD, Dr. Sci. (Med.)

 

Russian Federation, Moscow

Ksenia I. Plakhova

State Research Center of Dermatovenereology and Cosmetology

Email: plahova@cnikvi.ru
ORCID iD: 0000-0003-4169-4128
SPIN-code: 7634-5521

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Alexey A. Kubanov

State Research Center of Dermatovenereology and Cosmetology

Author for correspondence.
Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences

 

Russian Federation, Moscow

References

  1. Kubanova AA, Kubanov AA, Araviiskaia ER, Samcov AV. Federal clinical recommendation of rosacea. Dermatovenereology. Moscow: Business Express; 2015. Р. 528–541. (In Russ).
  2. Alexis AF, Callender VD, Baldwin HE, et al. Global epidemiology and clinical spectrum of rosacea, highlighting skin of color: Review and clinical practice experience. J Am Acad Dermatol. 2019;80(6):1722–1729. doi: 10.1016/j.jaad.2018.08.049
  3. Tan J, Schöfer H, Araviiskaia E, et al.; RISE study group. Prevalence of rosacea in the general population of Germany and Russia: The RISE study. J Eur Acad Dermatol Venereol. 2016;30(3):428–434. doi: 10.1111/jdv.13556
  4. Rainer BM, Kang S, Chien AL. Rosacea: Epidemiology, pathogenesis, and treatment. Dermatoendocrinol. 2017;9(1):e1361574. doi: 10.1080/19381980.2017.1361574
  5. Snarskaya E, Rusina T. Contemporary views of the pathogenesis and classification of rosacea. Vrach. 2019;30(3):17–21. (In Russ). doi: 10.29296/25877305-2019-03-03
  6. Zhiltsova EE, Mezhevaya KV, Isakov SA. Modern aspects of the prevalence and clinic of rosacea. Attending Physician. 2019;(9):80–82. (In Russ). doi: 10.26295/OS.2019.45.15.017
  7. Snarskaya ES, Rusina TS. Modern concepts of erythematotelangiectatic rosacea pathogenesis and treatment. Russ J Skin Venereal Dis. 2021;24(4):367–374. (In Russ). doi: 10.17816/dv87993
  8. Wilkin J, Dahl M, Detmar M, et al. Standart classification of rosacea: Report of the national rosacea society expert committee on the classification and staging of rosacea. J Am Acad Dermatol. 2002:46(4):584–587. doi: 10.1067/mjd.2002.120625
  9. Prokhorenkov VI, Mikhel DV, Guzey TN. Rosacea: Modern aspects of the etiology and pathogenesis. Clin Dermatol Venereol. 2015;(1):4–14. (In Russ). doi: 10.17116/klinderma201514-11
  10. Schaller M, Almeida LM, Bewley A, et al. Recommendations for rosacea diagnosis, classification and management: Update from the global ROSacea COnsensus 2019 panel. Br J Dermatol. 2020;182(5):1269–1276. doi: 10.1111/bjd.18420
  11. Samtsov AV. The evolution of ideas about rosacea. Opinion Leader. 2020;(39):53–58. (In Russ).
  12. Ahn CS, Huang WW. Rosacea Pathogenesis. Dermatol Clin. 2018;36(2):81–86. doi: 10.1016/j.det.2017.11.001
  13. Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–980. doi: 10.1038/nm1616
  14. Slesarenko NA, Leonova MA, Bakulev AL, et al. Role of the Helicobacter pylori as a trigger factor in the development of rosacea and effect of its eradication on the course of dermatosis. Bulletin Dermatol Venereol. 2012;88(2):33–39. (In Russ). doi: 10.25208/vdv664
  15. Kubanova AA, Mahakova YB. Rosacea: Prevalence, pathogenesis, particular features of clinical manifestations. Bulletin Dermatol Venereol. 2015;(3):36–45. (In Russ).
  16. Wang U, Wang B, Huang Y, et al. Multi-transcriptomic analysis and experimental validation implicate a central role of STAT3 in skin barrier dysfunction induced aggravation of rosacea. J Inflammation Res. 2022;(15):2141–2156. doi: 10.2147/JIR.S356551
  17. Abram K, Silm H, Maaroos HI. Risk factors associated with rosacea. J Eur Acad Dermatol Venereol. 2010;24(5):565–571. doi: 10.1111/j.1468-3083.2009.03472.x
  18. Svirshchevskaya EV, Matushevskaya EV, Matushevskaya YI. Topical issues of the pathogenesis and treatment of rosacea. Clin Dermatol Venereol. 2017;(4):4–12 (In Russ). doi: 10.17116/klinderma20171644-13
  19. Yazici AC, Tamer L, Ikizoglu G, et al. GSTM1 and GSTT1 null genotypes as possible heritable factors of rosacea. J Photodermatol Photoimmunol Photomed. 2006;22:208–210. doi: 10.1111/j.1600-0781.2006.00220.x
  20. Agafonova EV, Kruglova LS, Avagumyn MA. Genetic markers of rosacea. J New Med Technologies. 2018;25(4):137–144. (In Russ). doi: 10.24411/1609-2163-2018-16297
  21. Hayran Y, Lay I, Mocan MC, et al. Vascular endothelial growth factor gene polymorphisms in patients with rosacea: A case-control study. J Am Acad Dermatol. 2019;81(2):348–354. doi: 10.1016/j.jaad.2019.03.055
  22. Aponte JL, Chiano NM, Yerges-Armstrong LM, et al. Assessment of rosacea symptom severity by genome-wide association study and expression analysis highlights immuno-inflammatory and skin pigmentation genes. Human Molecular Genetics. 2018;2(15):2762–2772. doi: 10.1093/hmg/ddy184
  23. Park BW, Ha JM, Cho EB, et al. A study on vitamin D and cathelicidin status in patients with rosacea: Serum level and tissue expression. Ann Dermatol. 2018;30(2):136–142. doi: 10.5021/ad.2018.30.2.136
  24. Davydova AM, Bakulev AL, Morrison AM, Leonova MA. Molecular mechanisms of rosacea pathogenesis. Saratov State Med University J. 2013;9(3):561–565. (In Russ).
  25. Wang L, Cheng B, Ju Q, Sun BK. AhR regulates peptidoglycan-induced inflammatory gene expression in human keratinocytes. J Innat Immun. 2022;14(2):124–134. doi: 10.1159/000517627
  26. Deng Z, Chen M, Liu Y, et al. A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea. EMBO Mol Med. 2021;13(5):e13560. doi: 10.15252/emmm.202013560
  27. Peng Q, Sha K, Liu Y, et al. mTORC1-Mediated angiogenesis is required for the development of rosacea. Front Cell Dev Biol. 2021;(9):751–785. doi: 10.3389/fcell.2021.751785
  28. Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol. 2018;40(3):249–259. doi: 10.1007/s00281-018-0675-z
  29. Shih YH, Xu J, Kumar A, et al. Alterations of immune and keratinization gene expression in papulopustular rosacea by whole transcriptome analysis. J Investigative Dermatol. 2020;140(5):1100–1103.e4. doi: 10.1016/j.jid.2019.09.021
  30. Mueller SN. Neural control of immune cell trafficking. J Exp Med. 2022;219(3):e20211604. doi: 10.1084/jem.202116041
  31. Olisova OY, Anpilogova EM. Current management options for rosacea: Clear skin is our reality. Russ J Skin Venereal Dis. 2020;23(5):324–333. (In Russ). doi: 10.17816/dv49867
  32. Rusina TS, Snarskaya ES. Еrythematotelangiectatic rosacea: The optimization of diagnostics and therapy. Russ J Skin Venereal Dis. 2019;22(3-4):111–119. (In Russ).
  33. Romashkina AS, Olisova OY, Snarskaya ES. Transdermal redermalization in rosacea: Rehab procedures in intercurrent period. Russ J Skin Venereal Dis. 2020;23(3):182–187. (In Russ). doi: 10.17816/dv48901
  34. Capec P, Dicherson TJ. Sensing the deadliest toxin: Technologist for botulinum neurotoxin. Toxins (Basel). 2010;2(1):24–53. doi: 10.3390/toxins2010024
  35. Scala J, Vojvodic A, Vojovodic P, et al. Botulin toxin use in rosacea and facial flushing treatment. Open Access Maced J Med Sci. 2019;7(18):2985–2987. doi: 10.3889/oamjms.2019.784
  36. Rainer BM, Kang S, Chien AL. Rosacea: Epidemiology, pathogenesis, and treatment. Dermatoendocrinol. 2017;9(1):e1361574. doi: 10.1080/19381980.2017.1361574
  37. Field M, Splevins A, Picaut P, et al. Abobotulinumtoxin A (Dysport), Onabotulinumtoxin A (Botox), and Incobotulinumtoxin A (Xeomin) neurotoxin content and potential implications for duration of response in patients. Toxins (Basel). 2018;10(12):535. doi: 10.3390/toxins10120535
  38. Artemenko AR, Dutikova EM, Zabnenkova OV, et al. The ABC of botulinum therapy: A scientific and practical publication. Ed. by S.L. Timerbayeva. Moscow: Practical Medicine; 2018. 416 p. (In Russ).
  39. Calvisi L, Diaspro A, Sito G. Microbotox: A prospective evaluation of dermatological improvement in patients with mild-to-moderate acne and erythematotelangiectatic rosacea. J Cosmet Dermatol. 2022;21(9):3747–3753. doi: 10.1111/jocd.14692
  40. Carmichael NM, Dostrovsky JO, Charlton MP. Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. PAIN. 2010;149(2):316–324. doi: 10.1016/j.pain.2010.02.024
  41. Eun J, Werbel T, Wang Z, et al. Botulinum toxin blocks mast cells and prevents rosacea like inflammation. J Dermatol Sci. 2019;93(1):58–64. doi: 10.1016/j.jdermsci.2018.12.004
  42. Dayan SH, Ashourian N, Cho K. A pilot, double-blind. Placebo-controlled study to assess the efficacy and safety of incobotulinumtoxin A injections in the treatment of rosacea. J Drugs Dermatol. 2017;16(6):549–554.
  43. Odo ME, Odo LM, Farias RV, et al. Botulinum toxin for the treatment of menopausal hot flushes: A pilot study. Dermatol Surg. 2011;37(11):1579–1583. doi: 10.1111/j.1524-4725.2011.02109.x
  44. Bloom BS, Payongayong L, Mourin A, Goldberg DJ. Impact of intradermal abobotulinumtoxin A on facial erythema of rosacea. Dermatol Surg. 2015;4(Suppl 1):S9–16. doi: 10.1097/DSS.0000000000000277
  45. Bharti J, Sonthalia S, Jakhar D. Mesotherapy with Botulinum toxin for the treatment of refractory vascular and papulopustular rosacea J Am Acad Dermatol. 2018;S0190–9622(18)30808-30809. doi: 10.1016/j.jaad.2018.05.014
  46. Friedman O, Koren A, Niv R, et al. The toxic edge-A novel treatment for refreactoryerythema and flushing of rosacea. Lasers Surg Med. 2019;51(4):325–331. doi: 10.1002/lsm.23023
  47. Schlessinger J, Gilbert E, Cohen JL, Kaufman J. New Uses of abobotulinumtoxin A in aesthetics. Aesthet Surg J. 2017;37(Suppl 1):S45–S58. doi: 10.1093/asj/sjx005
  48. Tong Y, Luo W, Gao Y, et al. A randomized, controlled, split-face study of botulinum toxin and broadband light for the treatment of erythematotelangiectatic rosacea. Dermatol Ther. 2022;35(5):e15395. doi: 10.1111/dth.15395
  49. Egorova OA. Use of botulinum toxin type A in patients with erythematous-telangiectatic rosacea. Medical Alphabet. 2019;2(26):100–104. (In Russ). doi: 10.33667/2078-5631-2019-2-26(401)-100-104
  50. Verbovaya ED, Rodina AL. Botulinum therapy in treatment of patients with rosacea. Medical Alphabet. 2022;(8):103–106. (In Russ). doi: 10.33667/2078-5631-2022-8-103-106

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Yakovleva A.O., Verbenko D.A., Kondrakhina I.N., Plakhova K.I., Kubanov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies