Molecular genetic factors of pathogenicity of influenza A virus (H1N1) pdm09


Cite item

Full Text

Abstract

Unlike influenza epidemics which affect the population almost yearly, pandemics occur much less frequently, but have more severe medical and social consequences. The investigation of the nature of the course of all modern epidemics and pandemics are acquiring the particular rationale. Pandemic influenza A (H1N1) 2009 was caused by the virus of the mixed (triple) origin. In Russia, the first three cases of disease have been identified in Moscow from 21 to 10 June 2009. In the Far East - 2-2,5 months later compared to the European part of Russia. However, the epidemic of influenza in Russia caused by influenza virus A (H1N1) pdm09, began and developed more rapidly just in the Far East. The highest morbidity rate (10,2-10,3 per 100 people) was registered in the cities of the Far Eastern and Siberian regions. The phylogenetic analysis allowed to reveal the origin of the triple reassortant virus A (H1N1)pdm09 out of H1N1, H1N2, H3N2 avian/porcine/human virus. The performed analysis of functional domains of proteins of the influenza virus A (H1N1) pdm09 showed that modern pandemic influenza viruses have several principal genetic defects, the totality of which permits to rank them to moderately pathogenic viruses. High risk of the severe course of influenza and occurrence of complications was noted in three groups ofpatients: pregnant women, especially in the 3 trimester ofpregnancy, children under 2 years of age and patients with concomitant chronic respiratory and cardiovascular systems, as well as patients with endocrine disorders and obesity.

About the authors

V. V Tsvetkov

Research Institute of Influenza

Email: suppcolor@gmail.com
аспирант, науч. сотрудник 15/17, professora Popova Str., Saint-Petersburg, Russian Federation, 197376

E. G Deeva

Research Institute of Influenza

Email: klinika@influenza.spb.ru
канд. мед. наук, гл. врач специализированной клиники вирусных инфекций 15/17, professora Popova Str., Saint-Petersburg, Russian Federation, 197376

D. M Danilenko

Research Institute of Influenza

Email: daria.baibus@gmail.com
науч. сотр. лаб. эволюционной изменчивости вирусов гриппа 15/17, professora Popova Str., Saint-Petersburg, Russian Federation, 197376

T. V Sologub

Research Institute of Influenza

Email: sologub@influenza.spb.ru
доктор мед. наук, проф. зам. директора по научной и клинической работе 15/17, professora Popova Str., Saint-Petersburg, Russian Federation, 197376

E. P Tikhonova

Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky

Email: infekbolepidem@krasgma.ru
доктор мед. наук, проф., зав. каф. инфекционных болезней и эпидемиологии с курсом ПО 1, Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

References

  1. Garten R.J., Davis C.T., Russell C.A. et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009; 325 (5937): 197-201.
  2. Покровский В.И., Киселев О.И. Пандемический грипп H1N1. СПб.: Росток; 2010.
  3. Conenello G.M., Zamarin D., Perrone L.A., Tumpey T., Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza a viruses contributes to increased virulence. PloS Pathogens. 2007; 3 (10): 141.
  4. Tran G.M.K., Gerbaud L.,Caprani A.C. Scorpion model of influenza A(H1N1). Jn: ISHEID Conf. Toulon; 2010: 168.
  5. Sun X., Tse L.V., Ferguson A.D., Whittaker G.R. Modification to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J. Virol. 2010; 84 (17): 8683-90.
  6. Arias C.F., Escalera-Zamudio M., Soto-del Rio M. et al. Molecular anatomy of 2009 influenza virus A(H1N1). Arch. Med. Res. 2009; 40: 643-54.
  7. Gannage M., Dormann D., Albrecht R. et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell. Host. Microbe. 2009; 6: 367-80.
  8. Fernandez-Sesma A., Marukian S., Ebersole B.J. et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 2006; 80: 6295-304.
  9. Min J.-Y., Krug R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’,5’-oligo(A)synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA. 2006, 103 (18): 7100-5.
  10. Twu R.Y., Noah D.L., Rao P. et al. The CPSF30 binding site on the NS1A protein of influenza a virus Is a potential antiviral target. J. Virol. 2006; 80: 3957-65.
  11. Львов Д.К., Бурцева Е.И., Прилипов А.Г. и др. Изоляция 24.05.2009 года и депонирование в Государственную коллекцию вирусов первого штамма A/Moscow/01/2009(H1N1)swl, подобного свиному вирусу A(H1N1) от первого выявленного 21.05.2009 года больного в г. Москве. Вопросы вирусологии. 2009; 5: 10-4.
  12. Denholm J.T., Gordon C.L., Johnson P.D. et al. Hospitalised adult patients with pandemic (H1N1) 2009 influenza in Melbourne, Australia. Med. J. Austral. 2010; 192 (2): 84-6.
  13. Soundararajan V. et al. Extrapolating from sequence - the 2009 H1N1 “swine” influenza virus. Nat. Biotechnol. 2009; 27: 510-13.
  14. Shinya K. et al. Avian flu: influenza virus receptors in the human airway. Nature. 2006; 440: 435-6.
  15. Tse H. et al. Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus. Exp. Biol. Med. 2011; 236: 915-25.
  16. Chen H. et al. Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China. J. Infect. Dis. 2010; 201: 1517-21.
  17. Tse H. et al. Clinical and virological factors associated with viremia in pandemic influenza A/H1N1/2009 virus infection. PLoS One. 2011; 6: e22534.
  18. Garten R.J. et al. Antigenic and genetic characteristics of swineorigin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009; 325: 197-201.
  19. Покровский В.И., Киселев О.И. Грипп птиц: происхождение инфекционных биокатастроф. СПб.: Росток; 2005.
  20. Bottcher E., Freuer C., Steinmetzer T., Klenk H.-D., Garten W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. 2009. Vaccine. doi: 10.1016/j.vaccine. 2009.03.029.
  21. Hui E.K.-W., Smee D. F., Wong M.-H. and Nayak D.P. Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J. Virol. 2006; 80 (12): 5697-707.
  22. Shin Y.-K., Liu Q., Tikoo S.K., Babiuk L.A., Zhou Y. Influenza a virus NS1 protein activates the phospatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J. Gen. Virol. 2007; 88: 13-8.
  23. Bukreyev A., Volchkov V.E., Blinov V.M. et al. The GP-protein of Marburg virus contains the region similar tj the “immunosuppressive domain” of oncogenic retrovirus P15E proteins. FEBS Lett. 1993; 323 (1-2): 183-7.
  24. Nelson M., Nelson D.S., Cianciolo G.J., Snyderman R. Effects of CKS-17, a synthetic retroviral envelope peptide, on cell-mediated immunity in vivo: immunosuppression, immunogenicity, and relation to immunosuppressive tumor products. Cancer Immunol. Immunother. 1989; 30: 113-8.
  25. Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы. М.: Геотар, 2005.
  26. Hale B.G., Randall R.E., Ortin J., Jackson D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 2008; 89: 2359-76.
  27. Satterly N., Tsai P.-L., van Deursen J. et al. Influenza virus targes the mRNA export machinery and the nuclear pore complex. Proc. Natl. Acad. Sci. USA. 2007; 104: 1853-8.
  28. Hale B.G., Steel J., Medina R.A., Manicassamy B. et al. Inefficient control of host gene expression by the 2009 pandemicH1N1 influenza a virus NS1 protein. J. Virol. 2010; 84: 6909-22.
  29. Киселев О.И. Геном пандемического вируса гриппа A/H1N1v-2009. М.: Издательство «Димитрейд График Групп»; 2011.

Copyright (c) 2014 Eco-vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies