Молекулярногенетические факторы патогенности вируса гриппа A(H1N1)pdm09


Цитировать

Полный текст

Аннотация

В отличие от эпидемий гриппа, практически ежегодно поражающих население, пандемии случаются гораздо реже, но имеют более тяжелые медицинские и социальные последствия. Изучение характера течения всех современных эпидемий и пандемий в настоящее время приобретает особую актуальность. Пандемия гриппа A(H1N1) 2009 г. была вызвана вирусом смешанного (тройного) происхождения. В России первые три случая заболеваний были выявлены в Москве с 21 по 10 июня 2009 г. На Дальнем Востоке - на 2-2,5 мес позже по сравнению с европейской частью России. Однако эпидемия гриппа в России, вызванная вирусом гриппа A(H1N1) pdm09, началась и более стремительно развивалась именно на Дальнем Востоке. Наиболее высокая заболеваемость (10,2-10,3 на 100 человек) была зарегистрирована в городах Дальневосточного и Сибирского регионов. Филогенетический анализ позволил установить происхождение тройного реассортанта вируса A(H1N1)pdm09 из вирусов H1N1, H1N2, H3N2 птиц, свиней и человека. Проведенный анализ функциональных доменов белков вируса гриппа A(H1N1)pdm09 показал, что современные пандемические вирусы гриппа имеют ряд принципиальных генетических дефектов, совокупность которых позволяет отнести их к умеренно патогенным вирусам. Высокий риск тяжелого течения гриппа и возникновения осложнений отмечен в трех группах больных: беременные женщины, особенно в III триместре беременности; дети до 2 лет и пациенты, имеющие сопутствующие хронические заболевания дыхательной и сердечно-сосудистой системы, а также пациенты с эндокринными нарушениями и ожирением.

Об авторах

Валерий Владимирович Цветков

ФГБУ НИИ гриппа Минздрава России

Email: suppcolor@gmail.com
аспирант, науч. сотрудник 197376, Санкт-Петербург, ул. профессора Попова, 15/17

Элла Германовна Деева

ФГБУ НИИ гриппа Минздрава России

Email: klinika@influenza.spb.ru
канд. мед. наук, гл. врач специализированной клиники вирусных инфекций 197376, Санкт-Петербург, ул. профессора Попова, 15/17

Дарья Михайловна Даниленко

ФГБУ НИИ гриппа Минздрава России

Email: daria.baibus@gmail.com
науч. сотр. лаб. эволюционной изменчивости вирусов гриппа 197376, Санкт-Петербург, ул. профессора Попова, 15/17

Тамара Васильевна Сологуб

ФГБУ НИИ гриппа Минздрава России

Email: sologub@influenza.spb.ru
доктор мед. наук, проф. зам. директора по научной и клинической работе 197376, Санкт-Петербург, ул. профессора Попова, 15/17

Елена Петровна Тихонова

Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого

Email: infekbolepidem@krasgma.ru
доктор мед. наук, проф., зав. каф. инфекционных болезней и эпидемиологии с курсом ПО 100204, Россия, Красноярский край, Красноярск, ул. Курчатова, 17

Список литературы

  1. Garten R.J., Davis C.T., Russell C.A. et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009; 325 (5937): 197-201.
  2. Покровский В.И., Киселев О.И. Пандемический грипп H1N1. СПб.: Росток; 2010.
  3. Conenello G.M., Zamarin D., Perrone L.A., Tumpey T., Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza a viruses contributes to increased virulence. PloS Pathogens. 2007; 3 (10): 141.
  4. Tran G.M.K., Gerbaud L.,Caprani A.C. Scorpion model of influenza A(H1N1). Jn: ISHEID Conf. Toulon; 2010: 168.
  5. Sun X., Tse L.V., Ferguson A.D., Whittaker G.R. Modification to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J. Virol. 2010; 84 (17): 8683-90.
  6. Arias C.F., Escalera-Zamudio M., Soto-del Rio M. et al. Molecular anatomy of 2009 influenza virus A(H1N1). Arch. Med. Res. 2009; 40: 643-54.
  7. Gannage M., Dormann D., Albrecht R. et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell. Host. Microbe. 2009; 6: 367-80.
  8. Fernandez-Sesma A., Marukian S., Ebersole B.J. et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 2006; 80: 6295-304.
  9. Min J.-Y., Krug R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’,5’-oligo(A)synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA. 2006, 103 (18): 7100-5.
  10. Twu R.Y., Noah D.L., Rao P. et al. The CPSF30 binding site on the NS1A protein of influenza a virus Is a potential antiviral target. J. Virol. 2006; 80: 3957-65.
  11. Львов Д.К., Бурцева Е.И., Прилипов А.Г. и др. Изоляция 24.05.2009 года и депонирование в Государственную коллекцию вирусов первого штамма A/Moscow/01/2009(H1N1)swl, подобного свиному вирусу A(H1N1) от первого выявленного 21.05.2009 года больного в г. Москве. Вопросы вирусологии. 2009; 5: 10-4.
  12. Denholm J.T., Gordon C.L., Johnson P.D. et al. Hospitalised adult patients with pandemic (H1N1) 2009 influenza in Melbourne, Australia. Med. J. Austral. 2010; 192 (2): 84-6.
  13. Soundararajan V. et al. Extrapolating from sequence - the 2009 H1N1 “swine” influenza virus. Nat. Biotechnol. 2009; 27: 510-13.
  14. Shinya K. et al. Avian flu: influenza virus receptors in the human airway. Nature. 2006; 440: 435-6.
  15. Tse H. et al. Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus. Exp. Biol. Med. 2011; 236: 915-25.
  16. Chen H. et al. Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China. J. Infect. Dis. 2010; 201: 1517-21.
  17. Tse H. et al. Clinical and virological factors associated with viremia in pandemic influenza A/H1N1/2009 virus infection. PLoS One. 2011; 6: e22534.
  18. Garten R.J. et al. Antigenic and genetic characteristics of swineorigin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009; 325: 197-201.
  19. Покровский В.И., Киселев О.И. Грипп птиц: происхождение инфекционных биокатастроф. СПб.: Росток; 2005.
  20. Bottcher E., Freuer C., Steinmetzer T., Klenk H.-D., Garten W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. 2009. Vaccine. doi: 10.1016/j.vaccine. 2009.03.029.
  21. Hui E.K.-W., Smee D. F., Wong M.-H. and Nayak D.P. Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J. Virol. 2006; 80 (12): 5697-707.
  22. Shin Y.-K., Liu Q., Tikoo S.K., Babiuk L.A., Zhou Y. Influenza a virus NS1 protein activates the phospatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J. Gen. Virol. 2007; 88: 13-8.
  23. Bukreyev A., Volchkov V.E., Blinov V.M. et al. The GP-protein of Marburg virus contains the region similar tj the “immunosuppressive domain” of oncogenic retrovirus P15E proteins. FEBS Lett. 1993; 323 (1-2): 183-7.
  24. Nelson M., Nelson D.S., Cianciolo G.J., Snyderman R. Effects of CKS-17, a synthetic retroviral envelope peptide, on cell-mediated immunity in vivo: immunosuppression, immunogenicity, and relation to immunosuppressive tumor products. Cancer Immunol. Immunother. 1989; 30: 113-8.
  25. Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы. М.: Геотар, 2005.
  26. Hale B.G., Randall R.E., Ortin J., Jackson D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 2008; 89: 2359-76.
  27. Satterly N., Tsai P.-L., van Deursen J. et al. Influenza virus targes the mRNA export machinery and the nuclear pore complex. Proc. Natl. Acad. Sci. USA. 2007; 104: 1853-8.
  28. Hale B.G., Steel J., Medina R.A., Manicassamy B. et al. Inefficient control of host gene expression by the 2009 pandemicH1N1 influenza a virus NS1 protein. J. Virol. 2010; 84: 6909-22.
  29. Киселев О.И. Геном пандемического вируса гриппа A/H1N1v-2009. М.: Издательство «Димитрейд График Групп»; 2011.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-вектор", 2014


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».