Microbial associations in human biotopes as a factor determining the occurrence of polymicrobial infections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Annually, data are accumulating on the involvement of opportunistic microorganisms in the development of inflammatory diseases in humans, maintaining a chronic inflammatory response and, thus, adapting to the conditions of existence in the biotopes of the human body. This review provides information on the interactions of microorganisms of medical importance, which affects the virulence of both opportunistic pathogens and “classical” pathogens, which probably underlie the chronicity of infection and inflammation. Often, opportunistic pathogenic species cannot fully realize their pathogenic potential, which is observed in numerous cases under conditions of microbial symbiosis. Thus, a revision of approaches to interpreting the results of microbiological methods is necessary, which takes into account the functional activity of the total microflora and the search for individual extrachromosomal genetic elements as a marker of the pathogenicity of microorganisms.

About the authors

Anatoliy P. Godovalov

Vagner Perm State Medical University

Author for correspondence.
Email: AGodovalov@gmail.com
ORCID iD: 0000-0002-5112-2003
SPIN-code: 4482-4378

MD, Cand. Sci (Med.)

Russian Federation, Perm

References

  1. Shkarin VV, Blagonravova AS, Chubukova ОА. Epidemiological approach to the evaluation of combined infectious diseases. Epidemiology and infectious diseases. Current items. 2016;(6):67–75. (In Russ).
  2. Gintsburg AL, Il’ina TS, Romanova IuM. “Quorum sensing” or social behavior of bacteria. Journal of Microbiology Epidemiology Immunobiology. 2003;(5):86–93. (In Russ).
  3. Bukharin OV. Symbiotic interactions of microorganisms during infection. Journal of Microbiology Epidemiology Immunobiology. 2013;(1):93–97. (In Russ).
  4. Bel’skiĬ VV, Shatalova EV. The reciprocal effect of the causative agents in a mixed infection in burn injury. Journal of Microbiology Epidemiology Immunobiology. 1999;(4):3–7. (In Russ).
  5. Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000. 2015;69(1):18–27. doi: 10.1111/prd.12087
  6. Janda JM, Abbott SL. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev. 2021;34(2):e00174-20. doi: 10.1128/CMR.00174-20
  7. Rodriguez-Medina N, Barrios-Camacho H. Duran-Bedolla J, Garza-Ramos U. Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect. 2019;8(1):973–988. doi: 10.1080/22221751.2019.1634981
  8. Hajjar R, Ambaraghassi G, Sebajang H, et al. Raoultella ornithinolytica: emergence and resistance. Infect Drug Resist. 2020;13:1091–1104. doi: 10.2147/IDR.S191387
  9. Keyes J, Johnson EP, Epelman M, et al. Leclercia adecarboxylata: an emerging pathogen among pediatric infections. Cureus. 2020; 12:e8049. doi: 10.7759/cureus.8049
  10. Jun J-B. Klebsiella pneumoniae liver abscess. Infect Chemother. 2018;50(3):210–218. doi: 10.3947/ic.2018.50.3.210
  11. Rashid T, Ebringer A. Rheumatoid arthritis is linked to Proteus — the evidence. Clin Rheumatol. 2007;26(7):1036–1043. doi: 10.1007/s10067-006-0491-z
  12. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547–569. doi: 10.1080/21505594.2021.1878688
  13. Laux C, Peschel A, Krismer B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol Spectr. 2019;7(2). doi: 10.1128/microbiolspec.GPP3-0029-2018
  14. Rasigade J-P, Dumitrescu O, Lina G. New epidemiology of Staphylococcus aureus infections. Clin Microbiol Infect. 2014; 20(7):587–588. doi: 10.1111/1469-0691.12718
  15. Tong SY, Davis JS, Eichenberger E., et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14
  16. Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev. 2014;27(3):419–440. doi: 10.1128/CMR.00092-13
  17. Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine Microbiota: Residents, Tourists, or Invaders? Front Immunol. 2018;9(208). doi: 10.3389/fimmu.2018.00208
  18. Godovalov AP, Karpunina NS, Karpunina TI. Moraxella osloensis as a part of genital tract microbiota in infertility: incidental findings or pathology markers? Journal of Microbiology Epidemiology Immunobiology. 2021;98(1):28–35. (In Russ). doi: 10.36233/0372-9311-53
  19. Sheppard SK. Strain wars and the evolution of opportunistic pathogens. Curr Opin Microbiol. 2022;67:102138. doi: 10.1016/j.mib.2022.01.009
  20. Valm AM. The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease. J Mol Biol. 2019;431(16):2957–2969. doi: 10.1016/j.jmb.2019.05.016
  21. Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–349. doi: 10.1038/nature09074
  22. Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2015;535(7613):511–516. doi: 10.1038/nature18634
  23. Uehara Y, Kikuchi K, Nakamura T, et al. H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillinresistant Staphylococcus aureus colonization of oral cavities in newborns. Clin Infect Dis. 2001;32(10):1408–1413. doi: 10.1086/320179
  24. Uehara Y, Nakama H, Agematsu K, et al. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. J Hosp Infect. 2000;44(2):127–133. doi: 10.1053/jhin.1999.0680
  25. Wollenberg MS, Claesen J, Escapa IF, et al. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio. 2014;5(4):e01286-14. doi: 10.1128/mBio.01286-14
  26. Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol. 2019;9:94. doi: 10.3389/fcimb.2019.00094
  27. Kilian M, Poulsen K, Blomqvist T, et al. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One. 2008; 3(7):e2683. doi: 10.1371/journal.pone.0002683
  28. Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi: 10.1038/s41579-018-0036-x
  29. Deriu E, Liu JZ, Pezeshki M, Edwards RA, et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013;14(N):26–37. doi: 10.1016/j.chom.2013.06.007
  30. Maltby R, Leatham-Jensen MP, Gibson T, et al. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PloS one. 2013;8(1):e53957. doi: 10.1371/journal.pone.0053957
  31. Deasy AM, Guccione E, Dale AP, et al. Nasal Inoculation of the Commensal Neisseria lactamica Inhibits Carriage of Neisseria meningitidis by Young Adults: A Controlled Human Infection Study. Clin Infect Dis. 2015;60(10):1512–1520. doi: 10.1093/cid/civ098
  32. Kim WJ, Higashi D, Goytia M, et al. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe. 2019;26(2):228–239.e8. doi: 10.1016/j.chom.2019.07.003
  33. Breshears LM, Edwards VL, Ravel J, Peterson ML. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol. 2015;15:276. doi: 10.1186/s12866-015-0608-0
  34. Wyatt TD, Greer A. The influence of growth medium on the interactions between Bordetella pertussis and Staphylococcus aureus. J Med Microbiol. 1976;9(2):243–246. doi: 10.1099/00222615-9-2-243
  35. Antipov D, Raiko M, Lapidus A, Pevzner PA. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res. 2019;29(6):961–968. doi: 10.1101/gr.241299.118
  36. Pellow D, Zorea A, Probst M, et al. SCAPP: an algorithm for improved plasmid assembly in metagenomes. Microbiome. 2021;9(1):144. doi: 10.1186/s40168-021-01068-z
  37. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104. doi: 10.3389/fcimb.2012.00104
  38. Ng HM, Kin LX, Dashper SG, et al. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog. 2016;94:60–69. doi: 10.1016/j.micpath.2015.10.022
  39. Kin LX, Butler CA, Slakeski N, et al. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. J Oral Microbiol. 2020;12(1):1808750. doi: 10.1080/20002297.2020.1808750
  40. Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci. 2022;9:866854. doi: 10.3389/fmolb.2022.866854
  41. Morou-Bermudez E, Elias-Boneta A, Billings RJ, et al. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Arch Oral Biol. 2011;56(11):1282–1289. doi: 10.1016/j.archoralbio.2011.04.015

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».