A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The goal of the paper is to explain why any left-invariant Hamiltonian system on (the cotangent bundle of) a 3-dimensonal Lie group G is Liouville integrable. We derive this property from the fact that the coadjoint orbits of G are two-dimensional so that the integrability of left-invariant systems is a common property of all such groups regardless their dimension.

We also give normal forms for left-invariant Riemannian and sub-Riemannian metrics on 3-dimensional Lie groups focusing on the case of solvable groups, as the cases of SO(3) and SL(2) have been already extensively studied. Our description is explicit and is given in global coordinates on G which allows one to easily obtain parametric equations of geodesics in quadratures.

Авторлар туралы

Alexey Bolsinov

School of Mathematics; Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: A.Bolsinov@lboro.ac.uk
Ұлыбритания, Loughborough, Leicestershire, LE11 3TU; Moscow, 11992

Jinrong Bao

School of Mathematics

Хат алмасуға жауапты Автор.
Email: J.Bao@lboro.ac.uk
Ұлыбритания, Loughborough, Leicestershire, LE11 3TU

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019