A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras
- Autores: Bolsinov A.1,2, Bao J.1
- 
							Afiliações: 
							- School of Mathematics
- Faculty of Mechanics and Mathematics
 
- Edição: Volume 24, Nº 3 (2019)
- Páginas: 266-280
- Seção: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219317
- DOI: https://doi.org/10.1134/S156035471903002X
- ID: 219317
Citar
Resumo
The goal of the paper is to explain why any left-invariant Hamiltonian system on (the cotangent bundle of) a 3-dimensonal Lie group G is Liouville integrable. We derive this property from the fact that the coadjoint orbits of G are two-dimensional so that the integrability of left-invariant systems is a common property of all such groups regardless their dimension.
We also give normal forms for left-invariant Riemannian and sub-Riemannian metrics on 3-dimensional Lie groups focusing on the case of solvable groups, as the cases of SO(3) and SL(2) have been already extensively studied. Our description is explicit and is given in global coordinates on G which allows one to easily obtain parametric equations of geodesics in quadratures.
Palavras-chave
Sobre autores
Alexey Bolsinov
School of Mathematics; Faculty of Mechanics and Mathematics
							Autor responsável pela correspondência
							Email: A.Bolsinov@lboro.ac.uk
				                					                																			                												                	Reino Unido da Grã-Bretanha e Irlanda do Norte, 							Loughborough, Leicestershire, LE11 3TU; Moscow, 11992						
Jinrong Bao
School of Mathematics
							Autor responsável pela correspondência
							Email: J.Bao@lboro.ac.uk
				                					                																			                												                	Reino Unido da Grã-Bretanha e Irlanda do Norte, 							Loughborough, Leicestershire, LE11 3TU						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					