Knauf’s degree and monodromy in planar potential scattering
- Авторы: Martynchuk N.1, Waalkens H.1
- 
							Учреждения: 
							- Johann Bernoulli Institute for Mathematics and Computer Science
 
- Выпуск: Том 21, № 6 (2016)
- Страницы: 697-706
- Раздел: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://journals.rcsi.science/1560-3547/article/view/218427
- DOI: https://doi.org/10.1134/S1560354716060095
- ID: 218427
Цитировать
Аннотация
We consider Hamiltonian systems on (T*ℝ2, dq ∧ dp) defined by a Hamiltonian function H of the “classical” form H = p2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.
Об авторах
Nikolay Martynchuk
Johann Bernoulli Institute for Mathematics and Computer Science
							Автор, ответственный за переписку.
							Email: N.Martynchuk@rug.nl
				                					                																			                												                	Нидерланды, 							Groningen, 9700 AK						
Holger Waalkens
Johann Bernoulli Institute for Mathematics and Computer Science
														Email: N.Martynchuk@rug.nl
				                					                																			                												                	Нидерланды, 							Groningen, 9700 AK						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					