Knauf’s degree and monodromy in planar potential scattering


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider Hamiltonian systems on (T*ℝ2, dqdp) defined by a Hamiltonian function H of the “classical” form H = p2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = −∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.

Sobre autores

Nikolay Martynchuk

Johann Bernoulli Institute for Mathematics and Computer Science

Autor responsável pela correspondência
Email: N.Martynchuk@rug.nl
Países Baixos, Groningen, 9700 AK

Holger Waalkens

Johann Bernoulli Institute for Mathematics and Computer Science

Email: N.Martynchuk@rug.nl
Países Baixos, Groningen, 9700 AK

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016