On a Convex Embedding of the Euler Problem of Two Fixed Centers
- Авторлар: Kim S.1
-
Мекемелер:
- Mathematisches Institut
- Шығарылым: Том 23, № 3 (2018)
- Беттер: 304-324
- Бөлім: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218979
- DOI: https://doi.org/10.1134/S1560354718030061
- ID: 218979
Дәйексөз келтіру
Аннотация
In this article, we study a convex embedding for the Euler problem of two fixed centers for energies below the critical energy level. We prove that the doubly-covered elliptic coordinates provide a 2-to-1 symplectic embedding such that the image of the bounded component near the lighter primary of the regularized Euler problem is convex for any energy below the critical Jacobi energy. This holds true if the two primaries have equal mass, but does not hold near the heavier body.
Негізгі сөздер
Авторлар туралы
Seongchan Kim
Mathematisches Institut
Хат алмасуға жауапты Автор.
Email: seongchan.kim@math.uni-augsburg.de
Германия, Universitätsstrasse 14, Augsburg, 86159
Қосымша файлдар
