On a Convex Embedding of the Euler Problem of Two Fixed Centers
- 作者: Kim S.1
-
隶属关系:
- Mathematisches Institut
- 期: 卷 23, 编号 3 (2018)
- 页面: 304-324
- 栏目: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218979
- DOI: https://doi.org/10.1134/S1560354718030061
- ID: 218979
如何引用文章
详细
In this article, we study a convex embedding for the Euler problem of two fixed centers for energies below the critical energy level. We prove that the doubly-covered elliptic coordinates provide a 2-to-1 symplectic embedding such that the image of the bounded component near the lighter primary of the regularized Euler problem is convex for any energy below the critical Jacobi energy. This holds true if the two primaries have equal mass, but does not hold near the heavier body.
作者简介
Seongchan Kim
Mathematisches Institut
编辑信件的主要联系方式.
Email: seongchan.kim@math.uni-augsburg.de
德国, Universitätsstrasse 14, Augsburg, 86159
补充文件
