Arnold diffusion for a complete family of perturbations
- Autores: Delshams A.1, Schaefer R.G.1
- 
							Afiliações: 
							- Department de Matemàtiques
 
- Edição: Volume 22, Nº 1 (2017)
- Páginas: 78-108
- Seção: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
- URL: https://journals.rcsi.science/1560-3547/article/view/218563
- DOI: https://doi.org/10.1134/S1560354717010051
- ID: 218563
Citar
Resumo
In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, φ, s) = p2/2+ cos q − 1 + I2/2 + h(q, φ, s; ε) — proving that for any small periodic perturbation of the form h(q, φ, s; ε) = ε cos q (a00 + a10 cosφ + a01 cos s) (a10a01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ π/2μ, μ = a10/a01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.
Palavras-chave
Sobre autores
Amadeu Delshams
Department de Matemàtiques
							Autor responsável pela correspondência
							Email: amadeu.delshams@upc.edu
				                					                																			                												                	Espanha, 							Av. Diagonal 647, Barcelona, 08028						
Rodrigo Schaefer
Department de Matemàtiques
														Email: amadeu.delshams@upc.edu
				                					                																			                												                	Espanha, 							Av. Diagonal 647, Barcelona, 08028						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					