Arnold diffusion for a complete family of perturbations
- Авторы: Delshams A.1, Schaefer R.G.1
- 
							Учреждения: 
							- Department de Matemàtiques
 
- Выпуск: Том 22, № 1 (2017)
- Страницы: 78-108
- Раздел: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
- URL: https://journals.rcsi.science/1560-3547/article/view/218563
- DOI: https://doi.org/10.1134/S1560354717010051
- ID: 218563
Цитировать
Аннотация
In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, φ, s) = p2/2+ cos q − 1 + I2/2 + h(q, φ, s; ε) — proving that for any small periodic perturbation of the form h(q, φ, s; ε) = ε cos q (a00 + a10 cosφ + a01 cos s) (a10a01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ π/2μ, μ = a10/a01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.
Ключевые слова
Об авторах
Amadeu Delshams
Department de Matemàtiques
							Автор, ответственный за переписку.
							Email: amadeu.delshams@upc.edu
				                					                																			                												                	Испания, 							Av. Diagonal 647, Barcelona, 08028						
Rodrigo Schaefer
Department de Matemàtiques
														Email: amadeu.delshams@upc.edu
				                					                																			                												                	Испания, 							Av. Diagonal 647, Barcelona, 08028						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					