Nekhoroshev theorem for perturbations of the central motion
- Авторлар: Bambusi D.1, Fusè A.1
-
Мекемелер:
- Dipartimento di Matematica
- Шығарылым: Том 22, № 1 (2017)
- Беттер: 18-26
- Бөлім: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
- URL: https://journals.rcsi.science/1560-3547/article/view/218550
- DOI: https://doi.org/10.1134/S1560354717010026
- ID: 218550
Дәйексөз келтіру
Аннотация
In this paper we prove a Nekhoroshev type theorem for perturbations of Hamiltonians describing a particle subject to the force due to a central potential. Precisely, we prove that under an explicit condition on the potential, the Hamiltonian of the central motion is quasiconvex. Thus, when it is perturbed, two actions (the modulus of the total angular momentum and the action of the reduced radial system) are approximately conserved for times which are exponentially long with the inverse of the perturbation parameter.
Негізгі сөздер
Авторлар туралы
Dario Bambusi
Dipartimento di Matematica
Хат алмасуға жауапты Автор.
Email: dario.bambusi@unimi.it
Италия, Via Saldini 50, Milano, I-20133
Alessandra Fusè
Dipartimento di Matematica
Email: dario.bambusi@unimi.it
Италия, Via Saldini 50, Milano, I-20133
Қосымша файлдар
