Nekhoroshev theorem for perturbations of the central motion
- 作者: Bambusi D.1, Fusè A.1
-
隶属关系:
- Dipartimento di Matematica
- 期: 卷 22, 编号 1 (2017)
- 页面: 18-26
- 栏目: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
- URL: https://journals.rcsi.science/1560-3547/article/view/218550
- DOI: https://doi.org/10.1134/S1560354717010026
- ID: 218550
如何引用文章
详细
In this paper we prove a Nekhoroshev type theorem for perturbations of Hamiltonians describing a particle subject to the force due to a central potential. Precisely, we prove that under an explicit condition on the potential, the Hamiltonian of the central motion is quasiconvex. Thus, when it is perturbed, two actions (the modulus of the total angular momentum and the action of the reduced radial system) are approximately conserved for times which are exponentially long with the inverse of the perturbation parameter.
作者简介
Dario Bambusi
Dipartimento di Matematica
编辑信件的主要联系方式.
Email: dario.bambusi@unimi.it
意大利, Via Saldini 50, Milano, I-20133
Alessandra Fusè
Dipartimento di Matematica
Email: dario.bambusi@unimi.it
意大利, Via Saldini 50, Milano, I-20133
补充文件
