Hyperbolic Chaos in Systems Based on FitzHugh – Nagumo Model Neurons


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the present paper we consider and study numerically two systems based on model FitzHugh–Nagumo neurons, where in the presence of periodic modulation of parameters it is possible to implement chaotic dynamics on the attractor in the form of a Smale–Williams solenoid in the stroboscopic Poincaré map. In particular, hyperbolic chaos characterized by structural stability occurs in a single neuron supplemented by a time-delay feedback loop with a quadratic nonlinear element.

作者简介

Sergey Kuznetsov

Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Udmurt State University

编辑信件的主要联系方式.
Email: spkuz@yandex.ru
俄罗斯联邦, ul. Zelenaya 38, Saratov, 410019; ul. Universitetskay 1, Izhevsk, 426034

Yuliya Sedova

Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

Email: spkuz@yandex.ru
俄罗斯联邦, ul. Zelenaya 38, Saratov, 410019

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018