Symplectic geometry of constrained optimization


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.

Sobre autores

Andrey Agrachev

PSI RAS; SISSA

Autor responsável pela correspondência
Email: agrachevaa@gmail.com
Rússia, ul. Petra I 4a, Pereslavl-Zalessky, 152020; via Bonomea 265, Trieste, 34136

Ivan Beschastnyi

SISSA

Email: agrachevaa@gmail.com
Itália, via Bonomea 265, Trieste, 34136

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017