Symplectic geometry of constrained optimization
- Autores: Agrachev A.A.1,2, Beschastnyi I.Y.2
- 
							Afiliações: 
							- PSI RAS
- SISSA
 
- Edição: Volume 22, Nº 6 (2017)
- Páginas: 750-770
- Seção: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218806
- DOI: https://doi.org/10.1134/S1560354717060119
- ID: 218806
Citar
Resumo
In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.
Palavras-chave
Sobre autores
Andrey Agrachev
PSI RAS; SISSA
							Autor responsável pela correspondência
							Email: agrachevaa@gmail.com
				                					                																			                												                	Rússia, 							ul. Petra I 4a, Pereslavl-Zalessky, 152020; via Bonomea 265, Trieste, 34136						
Ivan Beschastnyi
SISSA
														Email: agrachevaa@gmail.com
				                					                																			                												                	Itália, 							via Bonomea 265, Trieste, 34136						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					