Symplectic geometry of constrained optimization
- Авторы: Agrachev A.A.1,2, Beschastnyi I.Y.2
-
Учреждения:
- PSI RAS
- SISSA
- Выпуск: Том 22, № 6 (2017)
- Страницы: 750-770
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218806
- DOI: https://doi.org/10.1134/S1560354717060119
- ID: 218806
Цитировать
Аннотация
In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.
Ключевые слова
Об авторах
Andrey Agrachev
PSI RAS; SISSA
Автор, ответственный за переписку.
Email: agrachevaa@gmail.com
Россия, ul. Petra I 4a, Pereslavl-Zalessky, 152020; via Bonomea 265, Trieste, 34136
Ivan Beschastnyi
SISSA
Email: agrachevaa@gmail.com
Италия, via Bonomea 265, Trieste, 34136
Дополнительные файлы
