Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics
- Авторы: Kuznetsov S.P.1,2,3, Kruglov V.P.2,3
- 
							Учреждения: 
							- Udmurt State University
- Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
- Saratov State University
 
- Выпуск: Том 21, № 2 (2016)
- Страницы: 160-174
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/218238
- DOI: https://doi.org/10.1134/S1560354716020027
- ID: 218238
Цитировать
Аннотация
Computer verification of hyperbolicity is provided based on statistical analysis of the angles of intersection of stable and unstable manifolds for mechanical systems with hyperbolic attractors of Smale–Williams type: (i) a particle sliding on a plane under periodic kicks, (ii) interacting particles moving on two alternately rotating disks, and (iii) a string with parametric excitation of standing-wave patterns by a modulated pump. The examples are of interest as contributing to filling the hyperbolic theory of dynamical systems with physical content.
Об авторах
Sergey Kuznetsov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Saratov State University
							Автор, ответственный за переписку.
							Email: spkuz@yandex.ru
				                					                																			                												                	Россия, 							ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Astrakhanskaya 83, Saratov, 410012						
Vyacheslav Kruglov
Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Saratov State University
														Email: spkuz@yandex.ru
				                					                																			                												                	Россия, 							ul. Zelenaya 38, Saratov, 410019; ul. Astrakhanskaya 83, Saratov, 410012						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					