Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Computer verification of hyperbolicity is provided based on statistical analysis of the angles of intersection of stable and unstable manifolds for mechanical systems with hyperbolic attractors of Smale–Williams type: (i) a particle sliding on a plane under periodic kicks, (ii) interacting particles moving on two alternately rotating disks, and (iii) a string with parametric excitation of standing-wave patterns by a modulated pump. The examples are of interest as contributing to filling the hyperbolic theory of dynamical systems with physical content.

作者简介

Sergey Kuznetsov

Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Saratov State University

编辑信件的主要联系方式.
Email: spkuz@yandex.ru
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Astrakhanskaya 83, Saratov, 410012

Vyacheslav Kruglov

Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Saratov State University

Email: spkuz@yandex.ru
俄罗斯联邦, ul. Zelenaya 38, Saratov, 410019; ul. Astrakhanskaya 83, Saratov, 410012

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016