Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching sheet with zero nanoparticle mass flux
- 作者: El-Aziz M.A.1, Afify A.A.2
-
隶属关系:
- Faculty of Science
- Qassim University
- 期: 卷 26, 编号 3 (2019)
- 页面: 429-443
- 栏目: Article
- URL: https://journals.rcsi.science/1531-8699/article/view/218455
- DOI: https://doi.org/10.1134/S0869864319030119
- ID: 218455
如何引用文章
详细
The influences of Hall current and velocity slip on MHD Casson nanofluid flow and heat transfer over a stretching sheet have been analyzed numerically. The Casson fluid model is applied to characterize the non-Newtonian fluid behavior. Physical mechanisms responsible for Brownian motion and thermophoresis with non-uniform internal heat generation/absorption are accounted for in the model. A recently proposed boundary condition requiring zero nanoparticle mass flux is applied to achieve practically applicable results. The partial differential equations are transformed into the system of ordinary differential equations by applying similarity transformation, which is then solved numerically. A validation of the work is presented by comparing the current results with existing literature. The results have revealed that the axial skin friction, the transverse skin friction, the heat, and mass transfer rates are significantly boosted with an increase in Hall parameter.
作者简介
M. El-Aziz
Faculty of Science
编辑信件的主要联系方式.
Email: m_abdelaziz999@yahoo.com
沙特阿拉伯, Abha
A. Afify
Qassim University
编辑信件的主要联系方式.
Email: afify60@hotmail.com
沙特阿拉伯, Buraidah
补充文件
