On stability of channel flow of thermoviscous fluid


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents key results on a large-scale entrainment of thermoviscous liquid layers with different temperatures and their further mixing observed in the plane-parallel flow with an inflectional velocity profile. We show that the instability development in the channel is more intensive at the inflection point vicinity and is not related directly to vorticity generation in the near-wall region. The considered flow being unstable relative to the finite-amplitude harmonic disturbances possesses several resonant frequencies initiating the most intense entrainment. Temperature fields are analyzed based on the time-averaged entrainment layer thickness and temperature isoline displacement. We discuss the spectral properties of flow enstrophy, vorticity, and kinetic energy in terms of asymptotics of cascades observed and coherent structures. Okubo-Weiss criterion is used for mapping of four flow zones wherein an active filamentation of the turbulent veil or long-term existence of vortex structures is possible.

作者简介

Y. Kulikov

Joint Institute for High Temperatures RAS

编辑信件的主要联系方式.
Email: kulikov-yurii@yandex.ru
俄罗斯联邦, Moscow

E. Son

Joint Institute for High Temperatures RAS

Email: kulikov-yurii@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017