The influence of pulsed CO2-laser radiation on the transport of powder during laser cladding of metal


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of measurement of the in-flight velocity and temperature of particles in the light field of a pulsedperiodic laser was solved using contactless detection methods. The solution of the problem is based on using a spectrometer and a complex of laser and optical means. The diagnostic technique combines two independent methods for measuring the in-flight particle velocity: a passive one, based on the registration of the natural radiation emitted by the heated particles in the gas flow, and an active one, using the effect due to laser-beam scattering. Histograms of the statistical distributions of particle velocities for two operating modes of a coaxial nozzle were presented. There is no laser radiation in the first mode. There is pulsed laser radiation in the second mode. In the experiments, various powders (Al2O3, Mo, Ni, Al) with particle size distributions typical of laser deposition technology and various working gases (air, nitrogen, argon) were used. СО2-laser works in pulse-periodic mode with a mean power up to 2 kW. Pulsed power reaches several ten/hundred kilowatts. It is shown that in the field of laser radiation, powder particles acquire additional acceleration due to the evaporation and the appearance of a reactive force due to the recoil pressure of the vapors emitted from the irradiated part of the particle surface. It is shown that laser radiation can significantly affect the velocity and temperature of powder particles being transported by a gas jet. At the maximum carrier-gas velocity of up to 30 m/s, the velocities of single particles due to the laser-induced acceleration can reach the values of the order of 120 m/s.

About the authors

D. V. Sergachev

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Author for correspondence.
Email: yosergach@gmail.com
Russian Federation, Novosibirsk

O. B. Kovalev

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: yosergach@gmail.com
Russian Federation, Novosibirsk

G. N. Grachev

Institute of Laser Physics SB RAS

Email: yosergach@gmail.com
Russian Federation, Novosibirsk

A. L. Smirnov

Institute of Laser Physics SB RAS

Email: yosergach@gmail.com
Russian Federation, Novosibirsk

P. A. Pinaev

Institute of Laser Physics SB RAS

Email: yosergach@gmail.com
Russian Federation, Novosibirsk


Copyright (c) 2018 Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies