On the Ultrasolvability of Some Classes of Minimal Nonsplit p-Extensions with Cyclic Kernel for p > 2


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For any nonsplit p > 2-extension of finite groups with a cyclic kernel and a quotient group with two generators all the accompanying extensions of which split, there exists a realization of the quotient group as a Galois group of number fields such that the corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).

作者简介

D. Kiselev

The Russian Foreign Trade Academy

编辑信件的主要联系方式.
Email: denmexmath@yandex.ru
俄罗斯联邦, Moscow

I. Chubarov

Moscow State University

Email: denmexmath@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018