On the Ultrasolvability of Some Classes of Minimal Nonsplit p-Extensions with Cyclic Kernel for p > 2


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For any nonsplit p > 2-extension of finite groups with a cyclic kernel and a quotient group with two generators all the accompanying extensions of which split, there exists a realization of the quotient group as a Galois group of number fields such that the corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).

Об авторах

D. Kiselev

The Russian Foreign Trade Academy

Автор, ответственный за переписку.
Email: denmexmath@yandex.ru
Россия, Moscow

I. Chubarov

Moscow State University

Email: denmexmath@yandex.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).