On the Ultrasolvability of Some Classes of Minimal Nonsplit p-Extensions with Cyclic Kernel for p > 2
- Авторлар: Kiselev D.D.1, Chubarov I.A.2
-
Мекемелер:
- The Russian Foreign Trade Academy
- Moscow State University
- Шығарылым: Том 232, № 5 (2018)
- Беттер: 677-692
- Бөлім: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241387
- DOI: https://doi.org/10.1007/s10958-018-3897-7
- ID: 241387
Дәйексөз келтіру
Аннотация
For any nonsplit p > 2-extension of finite groups with a cyclic kernel and a quotient group with two generators all the accompanying extensions of which split, there exists a realization of the quotient group as a Galois group of number fields such that the corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).
Авторлар туралы
D. Kiselev
The Russian Foreign Trade Academy
Хат алмасуға жауапты Автор.
Email: denmexmath@yandex.ru
Ресей, Moscow
I. Chubarov
Moscow State University
Email: denmexmath@yandex.ru
Ресей, Moscow
Қосымша файлдар
