On the Noncommutative Deformation of the Operator Graph Corresponding to the Klein Group
- Авторы: Amosov G.G.1, Zhdanovskiy I.Y.2,3
-
Учреждения:
- Steklov Mathematical Institute
- Moscow Institute of Physics and Technology
- Higher School of Economics
- Выпуск: Том 215, № 6 (2016)
- Страницы: 659-676
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237694
- DOI: https://doi.org/10.1007/s10958-016-2872-4
- ID: 237694
Цитировать
Аннотация
We study the noncommutative operator graph ℒθdepending on a complex parameter θ recently introduced by M. E. Shirokov to construct channels with positive quantum zero-error capacity having vanishing n-shot capacity. We define a noncommutative group G and an algebra Aθwhich is the quotient of ℂG by a special algebraic relation depending on θ such that the matrix representation ϕ of Aθresults in the algebra ℳθgenerated by ℒθ. In the case of θ = ±1, the representation ϕ degenerates into a faithful representation of ℂK4, where K4is the Klein group. Thus, ℒθcan be regarded as a noncommutative deformation of the graph associated with the Klein group. Bibliography: 16 titles.
Ключевые слова
Об авторах
G. Amosov
Steklov Mathematical Institute
Автор, ответственный за переписку.
Email: gramos@mi.ras.ru
Россия, Moscow
I. Zhdanovskiy
Moscow Institute of Physics and Technology; Higher School of Economics
Автор, ответственный за переписку.
Email: ijdanov@mail.ru
Россия, Moscow
Дополнительные файлы
