On the Noncommutative Deformation of the Operator Graph Corresponding to the Klein Group


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the noncommutative operator graph ℒθdepending on a complex parameter θ recently introduced by M. E. Shirokov to construct channels with positive quantum zero-error capacity having vanishing n-shot capacity. We define a noncommutative group G and an algebra Aθwhich is the quotient of ℂG by a special algebraic relation depending on θ such that the matrix representation ϕ of Aθresults in the algebra ℳθgenerated by ℒθ. In the case of θ = ±1, the representation ϕ degenerates into a faithful representation of ℂK4, where K4is the Klein group. Thus, ℒθcan be regarded as a noncommutative deformation of the graph associated with the Klein group. Bibliography: 16 titles.

Sobre autores

G. Amosov

Steklov Mathematical Institute

Autor responsável pela correspondência
Email: gramos@mi.ras.ru
Rússia, Moscow

I. Zhdanovskiy

Moscow Institute of Physics and Technology; Higher School of Economics

Autor responsável pela correspondência
Email: ijdanov@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016