Differential Operators of Infinite Order in the Space of Formal Laurent Series and in the Ring of Power Series with Integer Coefficients


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the Hurwitz product (convolution) in the space of formal Laurent series over an arbitrary field of zero characteristic. We obtain the convolution equation which is satisfied by the Euler series. We find the convolution representation for an arbitrary differential operator of infinite order in the space of formal Laurent series and describe translation invariant operators in this space. Using the p-adic topology in the ring of integers, we show that any differential operator of infinite order with integer coefficients is well defined as an operator from [[z]] to p[[z]].

Об авторах

S. Gefter

Karazin Kharkiv National University

Автор, ответственный за переписку.
Email: gefter@univer.kharkov.ua
Украина, 4, pl. Svobody, Kharkiv, 61000

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).