Matrix Factorization for Solutions of the Yang–Baxter Equation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study solutions of the Yang–Baxter equation on the tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of rank 1 symmetry algebra. We consider the cases of the Lie algebra sℓ2, the modular double (trigonometric deformation), and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of sℓ2, finite-difference operators with trigonometric coefficients in the case of the modular double, or finite-difference operators with coefficients constructed of the Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulas. Bibliography: 44 titles.

Об авторах

S. Derkachov

St.Petersburg Department of the Steklov Mathematical Institute

Автор, ответственный за переписку.
Email: derkach@pdmi.ras.ru
Россия, St.Petersburg

D. Chicherin

Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH, CNRS, UMR 5108 associée à l’Université de Savoie

Email: derkach@pdmi.ras.ru
Франция, Annecy-le-Vieux

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).