The Cauchy–Stieltjes integrals in the theory of analytic functions
- Авторы: Ryazanov V.I.1
-
Учреждения:
- Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
- Выпуск: Том 234, № 1 (2018)
- Страницы: 61-72
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241754
- DOI: https://doi.org/10.1007/s10958-018-3981-z
- ID: 241754
Цитировать
Аннотация
We study various Stieltjes integrals as Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz–Stieltjes, and Cauchy–Stieltjes ones and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results hold for arbitrary bounded integrands that are differentiable a.e. and, in particular, for integrands of the class \( \mathcal{C}\mathrm{\mathcal{B}}\mathcal{V} \) (countably bounded variation).
Об авторах
Vladimir Ryazanov
Institute of Applied Mathematics and Mechanics of the NAS of Ukraine
Автор, ответственный за переписку.
Email: vl.ryazanov1@gmail.com
Украина, Slavyansk
Дополнительные файлы
