Multidimensional Analogs of the Cauchy–Riemann System and Representations of Their Solutions via Harmonic Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

At present, there are numerous multidimensional generalizations of holomorphic vectors. The most general of these is the four-dimensional generalization of the Cauchy–Riemann system. In the present work, by introducing two quaternion functions and the notion of quaternion differentiation, we obtain, for the first time, a five-dimensional generalization of holomorphic vectors. By using the representation of holomorphic vectors via the quaternion harmonic function and its derivatives, we consider the Riemann–Hilbert problem and one problem in a layer. A new solution of the Riemann–Hilbert problem in the five-dimensional half space is obtained.

Авторлар туралы

J. Tokibetov

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
Қазақстан, Almaty

G. Abduakhitova

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
Қазақстан, Almaty

А. Sarsekeeva

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
Қазақстан, Almaty

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018