Multidimensional Analogs of the Cauchy–Riemann System and Representations of Their Solutions via Harmonic Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

At present, there are numerous multidimensional generalizations of holomorphic vectors. The most general of these is the four-dimensional generalization of the Cauchy–Riemann system. In the present work, by introducing two quaternion functions and the notion of quaternion differentiation, we obtain, for the first time, a five-dimensional generalization of holomorphic vectors. By using the representation of holomorphic vectors via the quaternion harmonic function and its derivatives, we consider the Riemann–Hilbert problem and one problem in a layer. A new solution of the Riemann–Hilbert problem in the five-dimensional half space is obtained.

Sobre autores

J. Tokibetov

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
Cazaquistão, Almaty

G. Abduakhitova

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
Cazaquistão, Almaty

А. Sarsekeeva

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
Cazaquistão, Almaty

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018