Completion and extension of operators in Kreĭn spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A generalization of the well-known results of M.G. Kreĭn on the description of the self-adjoint contractive extension of a Hermitian contraction is obtained. This generalization concerns the situation where the self-adjoint operator A and extensions e à belong to a Kreĭn space or a Pontryagin space, and their defect operators are allowed to have a fixed number of negative eigenvalues. A result of Yu. L. Shmul’yan on completions of nonnegative block operators is generalized for block operators with a fixed number of negative eigenvalues in a Kreĭn space.

This paper is a natural continuation of S. Hassi’s and author’s recent paper [7].

作者简介

Dmytro Baidiuk

Department of Mathematics and Statistics, University of Vaasa

编辑信件的主要联系方式.
Email: dbaidiuk@uwasa.fi
芬兰, Vaasa

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017