🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Completion and extension of operators in Kreĭn spaces


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A generalization of the well-known results of M.G. Kreĭn on the description of the self-adjoint contractive extension of a Hermitian contraction is obtained. This generalization concerns the situation where the self-adjoint operator A and extensions e à belong to a Kreĭn space or a Pontryagin space, and their defect operators are allowed to have a fixed number of negative eigenvalues. A result of Yu. L. Shmul’yan on completions of nonnegative block operators is generalized for block operators with a fixed number of negative eigenvalues in a Kreĭn space.

This paper is a natural continuation of S. Hassi’s and author’s recent paper [7].

About the authors

Dmytro Baidiuk

Department of Mathematics and Statistics, University of Vaasa

Author for correspondence.
Email: dbaidiuk@uwasa.fi
Finland, Vaasa

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC