On the Moduli Space of Wigner Quasiprobability Distributions for N-Dimensional Quantum Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A mapping between operators on the Hilbert space of an N-dimensional quantum system and Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual pairing between the density matrix and the Stratonovich–Weyl kernel. It is shown that the moduli space of Stratonovich–Weyl kernels is given by the intersection of the coadjoint orbit space of the group SU(N) and a unit (N − 2)-dimensional sphere. The general considerations are exemplified by a detailed description of the moduli space of 2, 3, and 4-dimensional systems.

作者简介

V. Abgaryan

Joint Institute for Nuclear Research

编辑信件的主要联系方式.
Email: vahagnab@googlemail.com
俄罗斯联邦, Dubna

A. Khvedelidze

Joint Institute for Nuclear Research; A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University and Institute of Quantum Physics and Engineering Technologies, Georgian Technical University

Email: vahagnab@googlemail.com
俄罗斯联邦, Dubna; Tbilisi

A. Torosyan

Joint Institute for Nuclear Research

Email: vahagnab@googlemail.com
俄罗斯联邦, Dubna

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019