On the Moduli Space of Wigner Quasiprobability Distributions for N-Dimensional Quantum Systems
- 作者: Abgaryan V.1, Khvedelidze A.1,2, Torosyan A.1
-
隶属关系:
- Joint Institute for Nuclear Research
- A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University and Institute of Quantum Physics and Engineering Technologies, Georgian Technical University
- 期: 卷 240, 编号 5 (2019)
- 页面: 617-633
- 栏目: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/242801
- DOI: https://doi.org/10.1007/s10958-019-04379-7
- ID: 242801
如何引用文章
详细
A mapping between operators on the Hilbert space of an N-dimensional quantum system and Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual pairing between the density matrix and the Stratonovich–Weyl kernel. It is shown that the moduli space of Stratonovich–Weyl kernels is given by the intersection of the coadjoint orbit space of the group SU(N) and a unit (N − 2)-dimensional sphere. The general considerations are exemplified by a detailed description of the moduli space of 2, 3, and 4-dimensional systems.
作者简介
V. Abgaryan
Joint Institute for Nuclear Research
编辑信件的主要联系方式.
Email: vahagnab@googlemail.com
俄罗斯联邦, Dubna
A. Khvedelidze
Joint Institute for Nuclear Research; A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University and Institute of Quantum Physics and Engineering Technologies, Georgian Technical University
Email: vahagnab@googlemail.com
俄罗斯联邦, Dubna; Tbilisi
A. Torosyan
Joint Institute for Nuclear Research
Email: vahagnab@googlemail.com
俄罗斯联邦, Dubna
补充文件
