On Stably Biserial Algebras and the Auslander–Reiten Conjecture for Special Biserial Algebras


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

According to a result claimed by Pogorza_ly, selfinjective special biserial algebras can be stably equivalent to stably biserial algebras only, and these two classes coincide. By an example of Ariki, Iijima, and Park, the classes of stably biserial and selfinjective special biserial algebras do not coincide. In these notes based on some ideas from the Pogorzały paper, a detailed proof is given for the fact that a selfinjective special biserial algebra can be stably equivalent to a stably biserial algebra only. The structure of symmetric stably biserial algebras is analyzed. It is shown that in characteristic other than 2, the classes of symmetric special biserial (Brauer graph) algebras and symmetric stably biserial algebras coincide. Also a proof of the Auslander–Reiten conjecture for special biserial algebras is given.

作者简介

M. Antipov

St. Petersburg State University

编辑信件的主要联系方式.
Email: hyperbor@list.ru
俄罗斯联邦, St. Petersburg

A. Zvonareva

St. Petersburg State University

Email: hyperbor@list.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019