On Stably Biserial Algebras and the Auslander–Reiten Conjecture for Special Biserial Algebras


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

According to a result claimed by Pogorza_ly, selfinjective special biserial algebras can be stably equivalent to stably biserial algebras only, and these two classes coincide. By an example of Ariki, Iijima, and Park, the classes of stably biserial and selfinjective special biserial algebras do not coincide. In these notes based on some ideas from the Pogorzały paper, a detailed proof is given for the fact that a selfinjective special biserial algebra can be stably equivalent to a stably biserial algebra only. The structure of symmetric stably biserial algebras is analyzed. It is shown that in characteristic other than 2, the classes of symmetric special biserial (Brauer graph) algebras and symmetric stably biserial algebras coincide. Also a proof of the Auslander–Reiten conjecture for special biserial algebras is given.

Об авторах

M. Antipov

St. Petersburg State University

Автор, ответственный за переписку.
Email: hyperbor@list.ru
Россия, St. Petersburg

A. Zvonareva

St. Petersburg State University

Email: hyperbor@list.ru
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).