🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Boundary-Value Problems with Birkhoff Regular but not Strongly Regular Conditions for a Second-Order Differential Operator


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the self-adjoint problems whose operators split in the invariant subspaces induced by the involution operator Iy(x) = y(1− x). We construct nonself-adjoint perturbations of these problems that are Birkhoff regular but not strongly regular and, for some values of the coefficients of the boundary conditions transform into nonspectral problems in Dunford’s sense. We study the spectral properties of operators corresponding to these perturbations and, in particular, determine the eigenvalues and root functions and analyze the completeness and basis property of the system of root functions. We find the families of boundary conditions that generate essentially nonself-adjoint problems and contain the nonlocal Samarskii–Ionkin conditions.

About the authors

Ya. О. Baranetskij

Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University

Email: Jade.Santos@springer.com
Ukraine, Lviv

P. І. Kalenyuk

Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University; University of Rzeszów

Email: Jade.Santos@springer.com
Ukraine, Lviv; Rzeszów

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature