Boundary-Value Problems with Birkhoff Regular but not Strongly Regular Conditions for a Second-Order Differential Operator


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the self-adjoint problems whose operators split in the invariant subspaces induced by the involution operator Iy(x) = y(1− x). We construct nonself-adjoint perturbations of these problems that are Birkhoff regular but not strongly regular and, for some values of the coefficients of the boundary conditions transform into nonspectral problems in Dunford’s sense. We study the spectral properties of operators corresponding to these perturbations and, in particular, determine the eigenvalues and root functions and analyze the completeness and basis property of the system of root functions. We find the families of boundary conditions that generate essentially nonself-adjoint problems and contain the nonlocal Samarskii–Ionkin conditions.

Об авторах

Ya. Baranetskij

Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University

Email: Jade.Santos@springer.com
Украина, Lviv

P. Kalenyuk

Institute of Applied Mathematics and Fundamental Sciences, “L’vivs’ka Politekhnika” National University; University of Rzeszów

Email: Jade.Santos@springer.com
Украина, Lviv; Rzeszów

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).