Estimates of Functions, Orthogonal to Piecewise Constant Functions, in Terms of the Second Modulus of Continuity
- Авторлар: Ikhsanov L.N.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 234, № 3 (2018)
- Беттер: 330-337
- Бөлім: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241869
- DOI: https://doi.org/10.1007/s10958-018-4008-5
- ID: 241869
Дәйексөз келтіру
Аннотация
The paper is devoted to the problem of finding the exact constant \( {W}_2^{\ast } \) in the inequality ‖f‖ ≤ K ⋅ ω2(f, 1) for bounded functions f with the property
\( \underset{k}{\overset{k+1}{\int }}f(x) dx=0,\kern0.5em k\in \mathrm{\mathbb{Z}}. \)![]()
Our approach allows us to reduce the known range for the desired constant as well as the set of functions involved in the extremal problem for finding the constant in question. It is shown that \( {W}_2^{\ast } \) also turns out to be the exact constant in a related Jackson–Stechkin type inequality.
Авторлар туралы
L. Ikhsanov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: lv.ikhs@gmail.com
Ресей, St. Petersburg
Қосымша файлдар
