Estimates of Functions, Orthogonal to Piecewise Constant Functions, in Terms of the Second Modulus of Continuity


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper is devoted to the problem of finding the exact constant \( {W}_2^{\ast } \) in the inequality ‖f‖ ≤ K ⋅ ω2(f, 1) for bounded functions f with the property

\( \underset{k}{\overset{k+1}{\int }}f(x) dx=0,\kern0.5em k\in \mathrm{\mathbb{Z}}. \)

Our approach allows us to reduce the known range for the desired constant as well as the set of functions involved in the extremal problem for finding the constant in question. It is shown that \( {W}_2^{\ast } \) also turns out to be the exact constant in a related Jackson–Stechkin type inequality.

Об авторах

L. Ikhsanov

St. Petersburg State University

Автор, ответственный за переписку.
Email: lv.ikhs@gmail.com
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).