On the Recursive Sequence \( {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}} \)
- Authors: Simsek D.1,2, Abdullayev F.G.3
-
Affiliations:
- Kyrgyz–Turkish Manas University
- Selcuk University
- Mersin University
- Issue: Vol 234, No 1 (2018)
- Pages: 73-81
- Section: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241758
- DOI: https://doi.org/10.1007/s10958-018-3982-y
- ID: 241758
Cite item
Abstract
A solution of the following difference equation is investigated:
\( {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}},n=0,1,2,\dots \)![]()
where x−(k+1); x−k; : : : ; x−1; x0 ???? (0;∞) and k = 0; 1; 2; : : : .
Keywords
About the authors
Dağıstan Simsek
Kyrgyz–Turkish Manas University; Selcuk University
Author for correspondence.
Email: dagistan.simsek@manas.edu.kg
Kyrgyzstan, Bishkek; Konya
Fahreddin G. Abdullayev
Mersin University
Email: dagistan.simsek@manas.edu.kg
Turkey, Mersin
Supplementary files
