Magnetic Schrödinger Operator from the Point of View of Noncommutative Geometry
- Autores: Sergeev A.G.1
-
Afiliações:
- Steklov Mathematical Institute
- Edição: Volume 233, Nº 6 (2018)
- Páginas: 949-957
- Seção: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241727
- DOI: https://doi.org/10.1007/s10958-018-3974-y
- ID: 241727
Citar
Resumo
We give an interpretation of the magnetic Schrödinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of C*-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of the magnetic Schrödinger operator. We show how this idea can be applied to the integer quantum Hall effect.
Sobre autores
A. Sergeev
Steklov Mathematical Institute
Autor responsável pela correspondência
Email: sergeev@mi.ras.ru
Rússia, Moscow
Arquivos suplementares
