Magnetic Schrödinger Operator from the Point of View of Noncommutative Geometry
- Авторы: Sergeev A.G.1
-
Учреждения:
- Steklov Mathematical Institute
- Выпуск: Том 233, № 6 (2018)
- Страницы: 949-957
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241727
- DOI: https://doi.org/10.1007/s10958-018-3974-y
- ID: 241727
Цитировать
Аннотация
We give an interpretation of the magnetic Schrödinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of C*-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of the magnetic Schrödinger operator. We show how this idea can be applied to the integer quantum Hall effect.
Об авторах
A. Sergeev
Steklov Mathematical Institute
Автор, ответственный за переписку.
Email: sergeev@mi.ras.ru
Россия, Moscow
Дополнительные файлы
