Magnetic Schrödinger Operator from the Point of View of Noncommutative Geometry


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We give an interpretation of the magnetic Schrödinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of C*-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of the magnetic Schrödinger operator. We show how this idea can be applied to the integer quantum Hall effect.

Об авторах

A. Sergeev

Steklov Mathematical Institute

Автор, ответственный за переписку.
Email: sergeev@mi.ras.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).