Two-Level Least Squares Methods in Krylov Subspaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Two-level least squares acceleration approaches are applied to the Chebyshev acceleration method and the restarted conjugate residual method in solving systems of linear algebraic equations with sparse unsymmetric coefficient matrices arising from finite volume or finite element approximations of boundary-value problems on irregular grids. Application of the proposed idea to other iterative restarted processes also is considered. The efficiency of the algorithms suggested is investigated numerically on a set of model Dirichlet problems for the convection-diffusion equation.

Sobre autores

V. Il’in

Institute of Computational Mathematics and Mathematical Geophysics SO RAS; Novosibirsk State University

Autor responsável pela correspondência
Email: ilin@sscc.ru
Rússia, Novosibirsk; Novosibirsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018