Two-Level Least Squares Methods in Krylov Subspaces


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Two-level least squares acceleration approaches are applied to the Chebyshev acceleration method and the restarted conjugate residual method in solving systems of linear algebraic equations with sparse unsymmetric coefficient matrices arising from finite volume or finite element approximations of boundary-value problems on irregular grids. Application of the proposed idea to other iterative restarted processes also is considered. The efficiency of the algorithms suggested is investigated numerically on a set of model Dirichlet problems for the convection-diffusion equation.

Об авторах

V. Il’in

Institute of Computational Mathematics and Mathematical Geophysics SO RAS; Novosibirsk State University

Автор, ответственный за переписку.
Email: ilin@sscc.ru
Россия, Novosibirsk; Novosibirsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).