🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Operator-Norm Convergence Estimates for Elliptic Homogenization Problems on Periodic Singular Structures


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For an arbitrary periodic Borel measure μ we prove order O(ε) operator-norm resolvent estimates for the solutions to scalar elliptic problems in L2(ℝd, dμε) with ε-periodic coefficients, ε > 0. Here, με is the measure obtained by ε-scaling of μ. Our analysis includes the case of a measure absolutely continuous with respect to the standard Lebesgue measure, as well as the case of “singular” periodic structures (or “multistructures”), when μ is supported by lower-dimensional manifolds.

About the authors

K. Cherednichenko

University of Bath

Author for correspondence.
Email: k.cherednichenko@bath.ac.uk
United Kingdom, Claverton Down, Bath, BA2 7AY

S. D’Onofrio

University of Bath

Email: k.cherednichenko@bath.ac.uk
United Kingdom, Claverton Down, Bath, BA2 7AY

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature