Operator-Norm Convergence Estimates for Elliptic Homogenization Problems on Periodic Singular Structures


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For an arbitrary periodic Borel measure μ we prove order O(ε) operator-norm resolvent estimates for the solutions to scalar elliptic problems in L2(ℝd, dμε) with ε-periodic coefficients, ε > 0. Here, με is the measure obtained by ε-scaling of μ. Our analysis includes the case of a measure absolutely continuous with respect to the standard Lebesgue measure, as well as the case of “singular” periodic structures (or “multistructures”), when μ is supported by lower-dimensional manifolds.

Об авторах

K. Cherednichenko

University of Bath

Автор, ответственный за переписку.
Email: k.cherednichenko@bath.ac.uk
Великобритания, Claverton Down, Bath, BA2 7AY

S. D’Onofrio

University of Bath

Email: k.cherednichenko@bath.ac.uk
Великобритания, Claverton Down, Bath, BA2 7AY

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).