Monotone Orbifold Hurwitz Numbers


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In general, the Hurwitz numbers count the branched covers of the Riemann sphere with prescribed ramification data or, equivalently, the factorizations of a permutation with prescribed cycle structure data. In the present paper, the study of monotone orbifold Hurwitz numbers is initiated. These numbers are both variations of the orbifold case and generalizations of the monotone case. These two cases have previously been studied in the literature. We derive a cut-and-join recursion for monotone orbifold Hurwitz numbers, determine a quantum curve governing their wave function, and state an explicit conjecture relating them to topological recursion. Bibliography: 27 titles.

Об авторах

N. Do

School of Mathematical Sciences Monash University

Автор, ответственный за переписку.
Email: norm.do@monash.edu
Австралия, Melbourne

M. Karev

St.Petersburg Department of the Steklov Mathematical Institute

Email: norm.do@monash.edu
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).