🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Decomposition of Elementary Transvection in Elementary Group


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let σ = (σij ) be an elementary net (elementary carpet) of additive subgroups of a commutative ring (in other words, a net without diagonal), n the order of σ, ω = (ωij ) the derived net with respect to σ, and Ω = (Ωij ) the net associated with the elementary group E(σ). It is assumed that ω ⊆ σ ⊆ Ω and Ω is the smallest (complemented) net containing σ. The main result consists in finding the decomposition of any elementary transvection tij(α) into the product of two matrices M1 ∈ 〈tij(σij), tji(σji)〉 and M2 ∈ G(τ), where \( \uptau =\left(\begin{array}{ll}{\varOmega}_{11}\hfill & {\upomega}_{12}\hfill \\ {}{\upomega}_{21}\hfill & {\varOmega}_{22}\hfill \end{array}\right) \).

About the authors

R. Y. Dryaeva

North-Ossetian State University

Author for correspondence.
Email: dryaeva-roksana@mail.ru
Russian Federation, Vladicaucasus

V. A. Koibaev

North-Ossetian State University, South Mathematical Institute of the Russian Academy of Sciences

Email: dryaeva-roksana@mail.ru
Russian Federation, Vladicaucasus

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York